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Note on Dual Solutions for the Mixed Convection Boundary Layer Flow 
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Case of Constant Surface Heat Flux
Nota Dua Penyelesaian bagi Aliran Lapisan Sempadan Perolakan Bercampur Hampir 

dengan Rendah Silinder Bulat Mendatar: Kes Fluks Haba Permukaan Malar 

ALIN V. ROŞCA, NATALIA C. ROŞCA & IOAN POP*

ABSTRACT

The paper reconsiders the problem of the mixed convection boundary layer flow near the lower stagnation point of a 
horizontal circular cylinder with a second order slip velocity model and a constant surface heat flux studied recently 
by Roşca et al. (2013). The ordinary (similarity) differential equations are solved numerically using the function bvp4c 
from Matlab for different values of the governing parameters. It is found that the similarity equations have two branches, 
upper and lower branch solutions, in a certain range of the mixed convection parameters. A stability analysis has been 
performed to show that the upper branch solutions are stable and physically realizable, while the lower branch solutions 
are not stable and therefore, not physically possible. This stability analysis is different by that presented by Roşca et al. 
(2013), who have presented a time-dependent analysis to determine the stability of the solution branches.
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ABSTRAK

Kertas ini mempertimbangkan semula masalah aliran lapisan sempadan perolakan bercampur berhampiran titik genang 
rendah silinder bulat mendatar dengan model halaju gelincir peringkat kedua dan fluks haba permukaan malar yang 
dikaji oleh Roşca et al. (2013) sebelum ini. Persamaan pembezaan biasa (keserupaan) diselesaikan secara berangka 
menggunakan bvp4c fungsi dari Matlab bagi nilai berbeza daripada parameter pengelasan. Adalah didapati bahawa 
keserupaan persamaan mempunyai dua cabang, penyelesaian cabang atas dan bawah dalam sesetengah julat parameter 
perolakan bercampur. Analisis kestabilan yang telah dijalankan menunjukkan bahawa penyelesaian cabang atas adalah 
stabil dan tersedia secara fizikal, manakala penyelesaian cabang bawah adalah tidak stabil dan oleh itu, tidak mungkin 
tersedia secara fizikal. Analisis kestabilan ini adalah berbeza daripada yang dikemukakan oleh Roşca et al. (2013) yang 
telah menyampaikan analisis bersandar- masa untuk menentukan kestabilan cabang penyelesaian. 

Kata kunci: Dua penyelesaian; halaju gelincir peringkat kedua; penyelesaian berangka; penyelesaian persamaan; 
perolakan bercampur; titik stagnasi

INTRODUCTION

Forced, free and mixed convection flow is encountered in 
many practical applications, which include solar central 
receivers exposed to wind currents, electronic devices 
cooled by fans, nuclear reactors cooled during emergency 
shutdown and heat exchangers placed in a low-velocity-
environment (Seshadri et al. 2002). This process of heat 
transfer is also encountered in atmospheric and ocean 
circulations, in the handling of spent nuclear reactor fuel 
assemblies, in the design of solar energy collectors and in 
the process of frost formation involving low temperature 
surfaces. Hiemenz (1911) is the first who considered 
the steady two-dimensional forced convection near the 
stagnation point of a circular cylinder. In the past several 
years considerable amount of interest has been given to 
the free and forced convection stagnation point flows of 

a viscous fluid (Amin & Riley 1995; Ariel 1994; Bian 
& Rangel 1996; Ramachandran et al. 1988). Convective 
flows are usually modelled by assuming that the flow is 
driven either by a prescribed surface temperature or by 
a prescribed surface heat flux or by Newtonian heating 
from the bounding surface (Merkin 1994) or by convective 
surface boundary condition (Aziz 2009; Makinde & 
Olanrewaju 2010; Merkin & Pop 2011).
	 All these investigations are done, however, without 
considering the effect of the velocity slip. The non-
adherence of the fluid to a solid boundary, also known 
as velocity slip, is a phenomenon that has been observed 
under some assumptions. Wu (2008) proposed a new 
second order slip velocity model. Thus, Wang (2003) 
presented exact similarity solutions of the Navier-Stokes 
equations with slip velocity along a fixed plate. In another 
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paper he studied the two-dimensional or axisymmetric 
stagnation flow impinges on a plate moving in its own 
plane. The no slip condition on the solid boundary is 
replaced by the partial slip condition (Wang 2006). It has 
been shown that the Navier–Stokes and energy equations 
admit exact similarity solutions. The resulting nonlinear 
differential equations were solved both asymptotically and 
numerically. He showed that the Navier–Stokes and energy 
equations admit exact similarity solutions. The resulting 
nonlinear differential equations are solved asymptotically 
and numerically. Fang and Lee (2005) presented exact 
solutions for the flow of a viscous fluid past a stretching 
sheet with partial slip and also for an incompressible 
Couette flow with porous walls and slightly rarefied gases 
(Fang & Lee 2006).
	 In a recent paper by Roşca et al. (2013) the mixed 
convection boundary-layer flow near the lower stagnation 
point of a horizontal circular cylinder with a second-order 
slip velocity model and a constant surface heat flux has 
been considered. The transformed ordinary differential 
(similarity) equations have been solved numerically 
for different values of the governing parameters. The 
numerical studies are complemented by the derivation of 
a time-dependent analysis to determine the stability of the 
solution branches. We present, however, here a numerical 
analysis of the dual (upper and lower branch) solutions of 
the problem considered by Roşca et al. (2013) along with 
a corresponding numerical stability analysis. The second-
order slip velocity considered is similar with that used by 
Fang et al. (2010) for the flow past a permeable shrinking 
surface. Therefore, we believe that the present results are 
different by those given in the paper by Roşca et al. (2013).

BASIC EQUATIONS

Consider the mixed convection problem of a Newtonian 
fluid near the lower stagnation point of a horizontal 
circular cylinder of radius a with a velocity slip condition 
on the wall and a constant wall heat flux qw, where qw>0  
corresponds to a heated cylinder (assisting flow) and 
qw<0 corresponds to a cooled cylinder (opposing flow), 
respectively, as shown in Figure 1. It is also assumed that 
the velocity of the outer (inviscid) flow is Ue(x). Under 
these assumptions, the unsteady boundary-layer equations 
in the Cartesian coordinates x and y are (Roşca et al. 2013).

	 	 (1) 
  

	 	 (2)

	
	 	 (3)

where x is the coordinate measured along the surface of 
the cylinder started from the lower stagnation point of the 

cylinder and y is the coordinate measured in the direction 
normal to the surface of the cylinder, respectively, t is 
the time, u and v are the velocity components along x 
and y axes, T is the fluid temperature, g is the gravitation 
acceleration, α is the thermal diffusivity, β  is the coefficient 
of thermal expansion, ν is the kinematic viscosity, φ is 
the angle between outward normal at the body surface 
and the downward vertical. Near the stagnation point 
we can approximate sin φ ≈ x/a and the outer (inviscid) 
flow is approximated by Ue(x) ≈ U0 x/a, where U0 is the 
velocity scale. Equations (1-3) are subject to the initial and 
boundary conditions,

	 t = 0:  	 v = v0,	 u = 0,	 T = T∞	 for any x, y

	 t  > 0:	 v = v0,	 u = uslip,	 	 at 0 ≤ y < ∞	 (4)

		  u → Ue(x) = U0x/a,   T → T∞	as y → ∞,

where uslip is the velocity slip at the wall, which is valid for 
arbitrary Knudsen numbers, Kn, and is given as in Fang et 
al. (2010) and Wu (2008), 

	 	 (5)

	

	 Here = min (1/Kn, 1), α is the momentum 
accommodation coefficient with 0 ≤ ᾱ ≤ 1 and δ is the 
molecular mean free path. Based on the definition of l, it 
is seen that for any given value of  Kn, we have 0 ≤  ≤ 1. 
The molecular mean free path δ is always positive. Thus 
we know that M ≥ 0 and N ≤ 0. Here T∞ is the ambient 
temperature and k is the thermal conductivity. 
	 Following Roşca et al. (2013), the following 
dimensionless variables are introduced 

	 	 (6)

FIGURE 1. Physical model and coordinate system
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where Re = U0 a/v is the Reynolds number and y is the 
stream function, which is defined as  u = �y/�y and ν = 
–�ψ/�x. Substituting (6) into (2) and (3) and dropping the 
overbars, we obtain the following equations,

	 	 (7)

	 	 (8)

The initial and boundary conditions (4) become:

	

	 	
	

	 		  (9)

where Pr = ν/α is the Prandtl number, λ is the mixed 
convection parameter, A and B are constant dimensionless 
slip parameters with A ≥ 0 and B ≤ 0, which are given by:

	 	
	 (10)

	 Here Gr = g β(qw/k) a4/v2  is the Grashof number 
based on the heat flux qw. We notice that λ can be either 
positive (aiding flow), negative (opposing flow) and λ = 
0  corresponds to the forced convection flow, respectively. 
It should be stated that (7) and (8) describe the classical 
unsteady mixed convection boundary layer stagnation 
point flow, which we have to use for the stability of the dual 
solutions. In addition, it should be mention that the initial 
and the boundary conditions are new for this problem.
	 The physical quantities of interest are the skin friction 
coefficient Cf and the Nusselt number Nu, which are defined 
as:

	 	 (11)

where τw is the skin friction or shear stress along the surface 
of the cylinder and qw is the heat flux from the surface of 
the cylinder, which are given by:

	 	 (12)

Using (6), we get

	 	 (13)

where Rex = Ue(x)x/v is the local Reynolds number.

STEADY FLOW CASE

The steady states of (7) and (8), which represent the 
possible large time state of the system, are given by the 
ordinary differential equations:

	 	 (14)

	 θ" + Pr f θ' = 0,	 (15)

subject to the boundary conditions:

	 	 (16)

where primes denote differentiation with respect to y. It 
is worth to mention that when λ = A = B = 0, the problem 
becomes the classical steady stagnation point flow, 
described by Hiemenz (1911).

FLOW STABILITY

In order to test the stability of the steady flow solution f (y) 
= f0(y) and θ(y) = θ0(y), which satisfy the boundary-value 
problem (14-16), we write (Merkin 1985; Roşca & Pop 
2013; Weidman et al. 2006),

	
(17)

where γ is an unknown eigenvalue parameter and F(y, 
t) and G(y, t) are small relative to f0(y) and θ0(y). After 
substituting (17) into (7) and (8), we arrive to the following 
linearized problem,

	 	 (18)

	 	 (19)

along with the boundary conditions,

	 	 (20)

	 As in Merkin (1985), we analyse the stability of the 
steady flow and heat transfer solution f0(y) and θ0(y) by 
setting t = 0. Thus, F = F0(y) and G = G0(y) in (18) and 
(19) identify initial growth or decay of the solution (17). 
This leads to the following linear eigenvalue problem 

	 	 (21)

	 	 (22)
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along with the boundary conditions,

	 	 (23)

	 It is known that the stability of the corresponding 
steady flow solution f0(y) and θ0(y) is determined by the 
smallest eigenvalue γ. Following Harris et al. (2009), 
the range of possible eigenvalues can be determined by 
relaxing a boundary condition on F0(y) or G0(y). Thus, we 
relax the condition that G0(y) → 0 as y →∞ and for a fixed 
value of γ we solve the system (21), (22) along with the 
new boundary condition G0(0) = 1.

NUMERICAL METHOD AND RESULTS

The systems of (14-16) and (21-23) can be solved 
numerically by several numerical methods such as Keller-
box and finite-difference. However, we solved these 
equations here numerically using the function bvp4c from 
Matlab, because it works very efficiently for the flow 
stability. At the beginning, (14-16) and (21-23) are written 
as a system of first order ordinary differential equations. 
In general, the bvp4c function implements a collocation 
method for the solution of the following boundary value 
problem,

	 y´ = f (x, y),     a ≤ x ≤ b,	 (24)

subject to the two-point boundary conditions:

	 bc(y(a),   y(b) = 0.	 (25)

	 The approximate solution S(x) is a continuous cubic 
polynomial function on each subinterval [xn, xn+1] of the 
mesh a = x0 < x1 < … < xN = b  and it satisfies the boundary 
conditions,

	 bc(S(a),  S(b) = 0.	 (26)

	 The solution S(x) is a fourth order approximation to 
an isolated solution y(x) of the boundary value problem 
(24-25), i.e.,  where h is the maximum 
of the step sizes hn = xn+1, n =  and A is a constant. 
For such an approximation, the residual R(x)  in the ODEs 
is defined as,

 	 R(x) = S´(x) – f (x, S(x)).		  (27)

	 The relative tolerance was set to 10-7 and finite values of 
η → ∞, namely η = η∞ = 10 for the first solution branch and 
η = η∞ = 100 for the second solution branch, respectively, 
have been chosen. The numerical computations have been 
carried out for several values of the governing parameters, 
such as mixed convection parameter λ and of the slip 
parameters A and B as in Fang et al. (2010). The value of 
the Prandtl number Pr is taken as Pr = 1. It is found that the 

solution of (14) and (15) subject to the boundary conditions 
(16) is unique for λ > 0 (assisting flow). However, the case 
of buoyancy opposing flow (λ < 0), is considered here. 
We have validated the accuracy of the numerical scheme, 
by comparing the obtained results corresponding to the 
reduced skin friction coefficient f "(0) with the results 
reported by Wang (2006, 2003) when B = 0 (second-order 
slip is absent) and λ = 0 (forced convection flow). When λ 
= A = B = 0, the problem reduces to the steady stagnation 
point flow, described by Hiemenz (1911), which reported 
for f "(0) the value of f "(0) = 1.2325, which is in agreement 
with the value obtained in this paper. These comparisons 
are shown in Table 1 and it is found that the results are in 
excellent agreement. It gives us, therefore, the confidence 
that the present results are accurate.

TABLE 1. Comparison of the values of f "(0) for several values 
of A when λ = 0 (forced convection) and B = 0

A f “(0) 
Present study

f “(0) 
Wang (2003) or Wang 

(2006)
0 1.2325

(1.2325)
1.2325

0.2 1.0425 1.0425
0.4 0.8863 0.8863
0.6 0.7642 0.7642
0.8 0.6689 0.6689
1 0.5934 0.5934
2 0.3758 0.3759
5 0.1772 0.1773
10 0.0940 0.0940
20 0.0484 0.0485
50 0.0197 0.0198

∞ 0 0

( ) Result by Hiemenz (1911)

	 Figures 2 and 3 show the variation of the reduced 
skin friction coefficient f "(0) and 1/θ(0) with λ when A 
= B = 0 (no slip). It is worth mentioning that the results 
presented in Figure 2 are in completely agreement with 
the results presented by Roşca et al. (2013). This is also 
available for Figure 3, where we have plotted 1/θ(0), 
while Roşca et al. (2013) have plotted θ(0). Figures 4 
and 5 show the variations f"(0) and 1/θ(0) with the mixed 
convection parameter λ for several values of the first order 
slip parameter A when the second order slip parameter B = 
0. Also, Figures 6 to 9 indicate the variation of  f"(0) and 
1/θ(0) with λ for several values of the parameter B when 
A = 0. However, Figures 6 and 7 are for small absolute 
values of B, while Figures 8 and 9 are for large absolute 
values of B. All these figures show that dual solutions 
(upper and lower branch solutions) exist for (14) and (15) 
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FIGURE 2. Variation of  f "(0) with λ when A = 0 and B = 0 

FIGURE 3. Variation of 1/θ(0) with λ when A = 0 and B = 0

FIGURE 4. Variation of f "(0) with λ for several 
values of A  when B = 0

FIGURE 5. Variation of 1/θ(0) with λ for several 
values of A when B = 0

FIGURE 6. Variation of  f "(0)  λ for several values 
of B when A = 0

FIGURE 7. Variation of 1/θ(0) with λ  for several 
values of B when A = 0 
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with the boundary conditions (16) for λc ≤ λ ≤ 0 (opposing 
flow) and no solutions exist for λ < λc < 0, where λc < 0 is 
the critical value of λ < 0 for which (14) and (15) with  the 
boundary conditions (16) have no solutions. Thus, for   λ 
< λc < 0 the full Navier–Stokes and energy equations have 
to be solved. It has been shown in the paper by Roşca et al. 
(2013) that when B = 0 increasing the value of A, the value 
of λc < 0 will asymptotically decreas to around – 0.95. This 
is clearly seen also in Figures 4 and 5. As regards Figures 6 
to 9 when A = 0 and B < 0 the value of λc < 0  will increase 
until about – 0.5 in the case of small B and then decreases 
asymptotically for larger B until about – 0.55, which is 
in completely agreement with the results presented in the 
paper by Roşca et al. (2013).

	 In Table 2, we give the smallest eigenvalues g at 
several values of λ < 0 (opposing flow) and of the slip 
parameters A and B. The stability analysis shows that 
the upper branch solutions are stable and physically 
realizable, while the lower branch solutions are unstable 
and, therefore, not physically realizable (Merkin 1985; 
Roşca & Pop 2013; Weidman et al. 2006). Such kind of 
dual solutions have been first studied by Merkin (1985) for 
the mixed convection flow past a vertical plate embedded 
in a porous medium and also by Weidman et al. (2006) 
for the forced convection flow over a permeable moving 
semi-infinite flat plate.
	 An analogue further discussion with the results 
presented by Fang et al. (2010) is given in Figures 4 to 9, 

FIGURE 8. Variation of f "(0) with λ for several 
values of B when A = 0 

FIGURE 9. Variation of 1/θ(0) with λ  for several 
values of B when A = 0

TABLE 2. Smallest eigenvalues γ at several values of λ (< 0, opposing flow), A and B

A  B  λ Upper branch Lower branch
γ γ

-0.3 0.5494 -0.5694
0.2 0

-0.5 0.4119 -0.4274
- 0.3 0.6788 -0.6662

1 0
- 0.5 0.5336 -0.5352
- 0.3 0.4985 -0.5016

0 - 0.2
- 0.5 0.3006 -0.3021
- 0.3 0.5569 -0.5272

0 - 1
- 0.5 0.1152 -0.1155
- 0.3 0.6833 -0.6893

1 - 1
- 0.5 0.4648 -0.4765
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which illustrate the effects of the slip parameters A and 
B on f "(0) and 1/q(0). However, the results by Fang et 
al. (2010) are given for the forced convection flow past 
a shrinking sheet with the second-order slip flow. But the 
present results are for the mixed convection boundary 
layer stagnation point flow. Thus, in the case of stable 
solution, f "(0) decreases monotonically with A ≠ 0 when 
the parameter B = 0 (Figure 4), while opposite behaviour 
is noticed from Figures 6 and 8 when B ≠ 0 and A = 0. It is 
observed from Figure 5 that 1/θ(0) increases monotonically 
with A ≠ 0 when the parameter B = 0. Opposite behaviour 
is noticed from Figures 7 and 9 when B ≠ 0 and A = 0. 
However, on the lower branch solution both f "(0) and 
1/θ(0) increase with the parameter A ≠ 0 when B = 0  
(Figures 4 and 5), while opposite behaviour is noticed 
from Figures 6 to 9 when B ≠ 0 and A = 0. Therefore, the 
slip has a substantial effect on  f "(0) and 1/θ(0) . Figures 
4 to 9 also show that the critical value λc increases as 
the parameters A and B are increasing, suggesting that the 
slip increases the range of existence of the solutions of 
(14) and (15) with the boundary conditions (16).

	 Finally, Figures 10 to 15 show the samples of 
velocity f´(η) and temperature θ(η) profiles for opposing 
flow (λ < 0). One can see that the far field boundary 
conditions (16) are approached asymptotically and this 
supports the numerical results obtained. Therefore, 
the velocity profiles for the stable solution at the plate 
surface f '(0) are positive when A > 0 and B = 0  (Figure 
10), which is in agreement with the fact that f "(0)  is 
positive (14). The same argument holds for the case A = 0 
and B < 0 (Figure 12). On the other hand, it is clearly seen 
from these figures that for both velocity and temperature 
profiles the upper branch solution displays a thinner 
boundary layer thickness compared to the lower branch 
solution. The physical importance of this problem consists 
in that it shows that in the case of dual solutions the flow 
separates from the plate, which is very important for many 
practical problems. An improved understanding of such 
flows and the application of this knowledge to new design 
techniques should provide substantial improvements in 
performance, reliability, and costs of many fluid dynamic 
devices (McCroskey 1977).

FIGURE 10. Dimensionless velocity f '(η) profiles for several 
values of  A when B = 0 and λ = –0.5

FIGURE 11. Dimensionless temperature θ(η) profiles for several 
values of A when B = 0 and λ = –0.5

FIGURE 12. Dimensionless velocity f '(η) profiles for several 
values of B when A = 0 and λ = –0.5

FIGURE 13. Dimensionless temperature θ(η) profiles for 
several values of B when A = 0 and λ = –0.5
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CONCLUSION

The problem of the mixed convection boundary layer flow 
near the lower stagnation point of a horizontal circular 
cylinder with a constant surface heat flux has been studied 
in this paper, using a second order velocity slip model. 
The governing ordinary differential equations (boundary 
layer equations) were solved numerically for the case 
of opposing flow regime using the bvp4c method from 
Matlab. We can draw the following conclusions:
	 Equations (14) to (16) possess dual solutions for 
opposing flow case (λ < 0 and the solution curves bifurcate 
at the critical values λc < 0. The reduced skin friction 
coefficient f "(0) decreases monotonically for the upper 
branch solution with the first order slip parameter A ≠ 0  
when the second order slip parameter is absent (B = 0). 
Opposite behaviour is noticed when B ≠ 0 and A = 0 (first 
order slip is absent). In the case of 1/θ(0) it increases 
monotonically with parameter A ≠ 0 when B = 0, while 
opposite behaviour is noticed when B ≠ 0  and A = 0. 
However, on the lower branch solution, both f "(0) and 
1/θ(0) increase with the parameter  A ≠ 0 when B = 0, 
while opposite behaviour happens when B ≠ 0 and A = 0. 
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